Photoelectrochemical water splitting: an idea heading towards obsolescence?
نویسندگان
چکیده
منابع مشابه
Efficiency limits for photoelectrochemical water-splitting
Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community's focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on...
متن کاملHigh-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
Many narrow band-gap semiconductors cannot fulfil the energetic requirements for water splitting, thus the assistance of large external voltages to complete the water decomposition reaction is required. Through thermal decomposition of Fe(NO3)3 on n-Si nanowires prepared by the chemical etching method, we fabricated a high-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode that exhib...
متن کاملElectrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance
One-dimensional anodic titanium oxide (ATO) nanotube arrays hold great potential as photoanode for photoelectrochemical (PEC) water splitting. In this work, we report a facile and eco-friendly electrochemical hydrogenation method to modify the electronic and PEC properties of ATO nanotube films. The hydrogenated ATO (ATO-H) electrodes present a significantly improved photocurrent of 0.65 mA/cm2...
متن کاملMetal–Organic Frameworks as Promising Photosensitizers for Photoelectrochemical Water Splitting
Ti-based metal-organic frameworks (MOFs) are demonstrated as promising photosensitizers for photoelectrochemical (PEC) water splitting. Photocurrents of TiO2 nano wire photoelectrodes can be improved under visible light through sensitization with aminated Ti-based MOFs. As a host, other sensitizers or catalysts such as Au nanoparticles can be incorporated into the MOF layer thus further improvi...
متن کاملMonolithic Photoelectrochemical Device for 19% Direct Water Splitting
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125, USA. 3 Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Hahn-Me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy & Environmental Science
سال: 2018
ISSN: 1754-5692,1754-5706
DOI: 10.1039/c8ee00772a